
CONTACT PROBLEM ON THE INTERACTION BETWEEN 

AN ELASTIC DISK AND TWO DIFFERENT RIGID STAMPS 

PMM Vol. 33, No. 1, 1969, pp. 136-142 
A. V. BELOKON ’ 
(Rostov-on-Don) 

(Received March 25, 1968) 

A plane contact 
& 

roblem for an elastic disk interactin 
is considered. 

with two different ri id stamps 
e disk-stamp system is equilibrated y a force a plied to % x Pe center 

of the disk. It is assumed that there are no friction forces in the omain of contact, 
and no loading outside of it. 

The mentioned problem is reduced to determining the contact pressures from a sys- 
tem of integral equations of the first kind. 
saucted. Examples are considered. 

An asymptotic solution of the system is con- 

This paper is a further development and extension of part of the results elucidated in 

L1l. 

1. Formulation of the problem. Reduction to a cyatem of lntc- 
grrl equation). Asymptotic rolution of the nyctem of integral 
0 quh t ion,. Let an elastic medium fill a circular domain S of radius R (Fie. 1). 

Fig. 1 

interact with two different rigid stamps exerting &p-’ 
ressive forces QI and 0s. A force Q = Qs - Q, is app- 
lied at the center of the domain s . Let us assume there 
are no friction forces in the contact domain and no load- 
ing outside of it. In this case the following conditions 
can be written on the boundary of the domain s : 

=r =0 for --n+ka<O<-a,a<iJ<x-h= 

'F = 0 for I fj 1 Q n; t+ = fi (0) for I 8 J <a 

4 = f, (0) for n -ku<0<n+ka 

We assume the following relative to the function /i (0) : 

h(e) = 1d-- e) for I8 I G a, 
h(e + 4 = f+- 8 + 4 for IO 16 ka (1.1) 

Under the assumptions (1.1) made, evidently 

0, (f, e) = 0, (f, --a~ (f, 0) = -7 (f, -e). 

NOW, if known methods of solving the plane problem of elasticity theory are utilized 
I’*‘]. then the problem formulated can easily be reduced to determining the contact 

pressures from the following kind of system of integral equations: 
(1.2) 

0 ka 

1 4 (9) K (9 - e) dv + 5 41(cp + a) K (9 - e -fin)d~=dr~jl(e)--nc ~0~8, lel <a 

m-0( -ko 

La 
1 4rf6+ww+e8)dv+ i 4ww-e---wv= 

--La -(l 

=mr~f,(e+~)+~cc0se, lel<kcr 
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X(r) - - ‘/r - ‘/‘a (I - Bu) (1 - Y )* OOI I - 001 I lu 12 rid/” I + ‘/, (L-2v)(l - v)-* 

(rr rgp ( - 1) sin 1, A - ‘/r & (I - v’)-‘, C = comt, I = q c- 8 (t.3) 

Without resaicting the generality, we henceforth consider & ( i. 
Let us interchange variables in the system (1.2) so that the integrals on the right sides 

of the equations would have inte ration limits 
the first equation of (1.2) and 0 % 

-1 to 1, and let us replace 0 by at in 
y kaz in the second. Then let us represent the sys- 

tem (1.2) as an equivalent system of integral equations of the second kind, and obtain 

,w (x) = pl l fm 
n -& t--t s g; &at) dt + ‘2 X 

-1 

X 
l JIGa ’ s L-_r dt s (010 sgn (t - Y) + F [ah 0 - ~11) (i 4 

-1 

“(yz) 
a’[a8,(t-k8~y)]~,dy. 12161 (ifi, 4 i=i,2) 

where 
1 

P,= _1vG,9. S o(')(z) 
O(l)@) "i') (x) 

(I(=)= _’ *(k=+fl)=)/T----;i 

g{ (t) = /‘I (at) + RA-1 C sin at, g; (kat) = jr’ (kat + n) - RA-1 C sin at 

F(?)=K(;)+l~,T,-~,~l, 

(~ 5) 

* r=:-y, 010 = ‘/, (i - 2v) (i - v)“ 

(al= i , 6, = k), 

Let us briefly describe the process of passing from (1.2) to (1.4). Taking account of 
the evident inequality a (i + k) < n it is easy to note that the function K (0 -q) 
has only a logarithmic singularity on the line 8 = 0 and the function K (0 - (r - n) 
is continuous in the domain of variation of its argument. Therefore, each equation of 
(1.2) can be represented as 

8 

s 8, 
cpO)InIt--iIt= (P(t)Q(t 

-8 
s 

4 

--z)dt+ i w(t)01V--z)dt-t g(4, IxI<B 
-Y 

Q 0 - 4 E c (--2y, 2y), QI 0 - 4~c(-Y-B,y-t-p) 

Followin 
second kin f 

1.1, the latter is easily written as an equivalent integral equation of the 
. 

If it is assumed that 

f (at) E HP8 (--iSi), P > 1, B>O 

fs (kc= + n) E If,’ (-1, I), m>& >v>O 

(here and henceforth H,,” (-fl, 8) d enotes the space of functions whose n-rh deriva- 
tive satisfies the Holder condition with exponent a for I t 1 Q fl), then the following 
theorem holds. 
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Theorem 1.1. If the solution of the system (1.2) in the class of functions 
Lp (4, i), 1+ b>p> 1, d > 0 exists and is unique, then for any a E (0, at) it has 
the form 

9 (&5) = CD (a) (1 - 9)‘“L, 71 (kaz + n) = &‘(*) (i - +‘)“” 

(a+‘) (s) E c (-it 4)) 

We shall not stop to prove the theorem since it is easily proved if the following prop- 
erty is used [sl 

1 S r(t) f-2 J4==3 dtEc,(-ii, 11, if 7 (s) E Mm” (- 4, 1) 
-1 

Let us turn to the construction of an aysmptotic solution, for small cc , of the sys- 
tem of integral equations (1.4). To do this, let us first represent R (t) and K (I - n) 
as 

K 0) =ln l~t~l~~~+l~l~,(~~~~s(~)+~+a~I~l--lnl~l 
N 

KV -It)=F*(t)+iz&, F*(t)== &zt*t* (f=cp-ti) 
k=l 

and the right sides of (1.2) as 

Let us seek the solution of the system (1.4) as 1’1 

Substituting (1.6) - (1.8) into (1,4), and equating terms in identical powers of a 
and lua, we obtain equations for the successive determination of o#) (2). which 
yield when solved 

U,(i) (2) = n-V+, 01P (t) = I--&* (i-Zi) + n-‘u&r (2) P*l a, 

a,(*) (r) = n-l (f-29) (PjkU*; + P*U& III 64) - 23X-l Ua &&’ Se (2) + Z&-‘r?, X 

x f(O.~~S 011 + 011) (i - 29) + 3&r- 0,s’ (S,(z) - 0.1508)) 15,~ 

o,r(‘) (I) = It-’ Ppa,, ( i--22s) &,‘, o,r(‘) (t) = a,ja (t) b,* (1.9) 

&‘I(‘) (t) = x-‘Prf~l (‘)&‘t e# (2) = (Usi @) In hi + fso (I)) Pi+P/s dkt+3 x 

X(2‘-'/,I' - 'fr) + r/,utl (I-2t’) - ‘/s n“Osr+ N, (2) I b*t) bit + 2lt%fii?libpjtif 

Go(‘) = {P1 (ho w+t41 (2) in a,) + IV, Ua&mv~ (2) - oma,,n-’ Ns (z)-o,~&v~(;1)1 b,, - 

- a@“’ I(i-29) S, (8) + ‘hl bid} ;R-‘O(’ + n“k Pj[‘/a R-’ orlo&‘* + 
+ (%wu + 4%) (-2’ + Ys t’ + l/s) - ‘1s allad (I-2rP)] 6,s + 6C%&‘#bjs 
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Here 

Ir1W A ~%1%di (4, fro (4 = n-8 {V* Ollta& (t) + (80,l (1+2rr) - 19.3 n-4 x 

‘x U?I SI (~1 + I9#,1+ (1.814 011 + 2nd oiol S, (t) -+ *I, 011 + 8&n-W S, +I.)) 

1.1 (*) = 4 (t’ + r’ - ‘/O-h, + ‘/, (2” - 2~’ + %) all’ - ‘/, JI-‘u,& N, (s) 

fro(t) = - 4 ft. + i 7 7/r)o, - (5.561~~ - 0.43841 - 1.888)al, + 8~4~a,,tN,(z)+ 

+‘/* ~0 am* (i.814a~l+ 20~) N,(r) + 8h-@a,dN‘ (t) - (1.814%1+ 2451) (2’ -f, W+‘/d + 
+16n%lato*Nc (2) 

&@)=%a + (9 - ‘1,) 8, (4 - 3& (4, N, (4 = --‘!I Sl(4 + 12 (I + It) x 

x Sa (21 + @7 (4 - 81) S‘ (2) + 4.189x1 - 5.570 

Nt W = 8& (l-2$) - Sl (t) + ‘/s @’ - ‘&I S4 (=I + ‘be (1.10) 

N, (8) - So (t) + (0.083122 - l.u)8)S&s) - 0.2494&(s) - O.O284z~@ + 0.09928x‘- 
-06.3833 2 - 0.%?986 

N, (r) = (0.8898 - 0.18579 - 0.05714r’) S, (t) - (3.146 - 1.158~’ + 0,019051()x 

xS&) - 0.0192& (t) + 0.3723 + 0.015232-r, N,(z) = (0.4583 - 0.1858z’+0.003!88~‘)x 

xS, (2) - (0.1245-0.01435~ - 0.093502 t‘)S, (z) + 0.00478.S~ (t) - 0.05018 - 

- 0.002534#, N,(t) = (0.23~ + O.O6~5~)S, (2) + 0.3948 - 1.308 31 + 0.82@7r( + 

+ 0.08315 (1 - ti)S Id (1 - s) (1 + s)‘)-1 

N, (I) = 9S, (x) + 8 (i + 22) Sl(t) + ‘//,, N, (z) = u; (2) - SC (*I 

u,,,+, (t) + u,,t (2) + 2 (1 - 29) C&t, (4 - 8+ I (2n + 9 = 0 

-U_*(r)= &(t)=-ln(l+z)(l-t)-’ 

se f+) = ‘J* + (i - 2~‘) + lJ, (1 - t’)’ (Id (1 - r)(l + +p - n’) 

Sl+d t=r (1 -2”) % 1 3u* (XI 4=u,,, (=I 

*=l (4k” - 9)’ - 32k + I)’ (2k - 3)’ I 

s, (2) = 96 (1 -x’) g 
u, (2) 

*nl (4/c’ - if’ (4kP - 9)s 

8i = 
1, if i-i 

k, if i =2 
ifi; i, i=i, 2 

me expresiom for the functiom Si (f), i = i; 2,..., 5, & well as us& (2~) are presen- 
ted in I’], see formula (1.15). Given there also are tables of the functions St (z), i = 

,..., 5 for values of I 2 1 < 1 with an A = 0.1 spacing. 
solution of the system (1.4), or equivalently, the differentiated 

as been obtained. Evidently, the class of solutions of (1.2) will include 
e whole class of solutions of the original system (1.2), as well as solutions, extraneous 

to the s 
*B right SI 

stem (1.2), which satisfy the solution of (1.2) with an arbitrary constant on the 
e. Utilizing the arbitrariness latent in the solution of (l-4), it can be demanded 

that this solution should satisfy the original system (I. 2). We hence obtain equations to 
determine the arbitrary constants I$ 

Let us now determine the Pi. To do this let us substitute the values found for cu(*)(lc) 
in the system (1.2). We then put 0 P O_ ,and by evaluating all the integrals we obtain 
a system of equations to determine the PI, namely: 
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4 

PI 2 B,,a'- 
f 

~/4(rr19kaeIna + Pr Ji:(A,, + Al,In ka)(ka)'=f 

l==o 1 I=0 

Here 
Am= aw + In 2, dro = 0.8t06a20, dw = us1 + 0.3069qx - O.OSZSSa+* 

dw = 1.442az1 - 0.1454allazp - O.i802a~,a~ - O.O1775a& 

dto = 2.025as1 + 1.066aI,_-- (0.8545~~~ +0.6254as1,-- O.OZZOa,$) iO-*alo* - 0.3004t~,,,~~~- 

-0.1628 ax11 - 0.41034**as~ - 0.25 (asr’ + k%,,q 

dci = -i, AlI = 0, A,, = am A,1 = -O.BOia~~a~, dtr = 2.025al, - 0.4039 all* - 

- 0.06530~,0&’ - 0.5artoll, B, = k-1 a&' (i.12) 

Bli = 0, B,{ = VS~CI (i $ k*) k6j-"+ B,i = - 0*090080‘~ a;~, k(l+k’)dj-l, CM z 0 

hi = - ad1 (0.2017 011 + 0.25 0,1 + 0.04927@), S-‘j k (i + k)‘, C-1‘ = nb&-” 

Cu = - ‘/* nb&, crt== -0.2829a&it d,‘, C,‘ = -l(0.6337a~~+0.06051aJ+0.7854a;,)~ 

Y bi, - f.i78 b,,] 6,’ - ‘k n ad1 kbj& (i =+ i; i, j = 1,2; 81 = 1, 8, = k) 

And finally, we obtain the following formula to determine the Qj : 

Q, = Rai$ {Pi [i - V,CL*&~~ + '/,a~-~ awa-a6~8 - (O.i008~r,~ + 0.1250,~ + 0.02464aw’- 

-?I,, - l/a al1 In 6,) a%Jr - I/L) ka,,Pj a*di4 - ‘/a 1~ b#6~*) (i # i, i, i = 4,s) (1.13) 

Formula (1.13) yields the value of the force referred to unit length of the disk. In 
order to obtain the force which must be applied to a disk of length 2, the values given 
by (1.13) must be multiplied by 1. 

Let us write down a number of the coefficients utt in (1.6) 

011 = 0.5, aI1 = - I/:,, aqo = 0,25na, a21 = - lfr,zca, am = -0.5 - b 
orl=0.5(‘/l, + b - 0.5a), ajp = l/p4 (a - b - 1’S/ra) (1.14) 

40 =-0.5+In2+b,a~~=0.5(0.5~-b-11n2-0.25),a~~=*/~~(b-a~Cn2~ 
+ lo/l& (a = (1 - 2 v) (i - v)-l, b = l/l, (5 - 8 v) (i - v)-‘) 

The general scheme of a computation by means of the formulas proposed is the 
following: 

1, We find ask by means of (1.14) by assigning the V * 

8. We find values of Pi (i - i,2) from the system (1. ll), by giving a and k. and 
utilizing (1.12), and then we find Qi (i =. i,2) from (1.13). 

3. We find the arbitrary constant C from the condition Q = Q* - Q1 by giving Q 
Substituting c into (1.13). we find Qt, and also QI = tjs - Q. 

4. Substituting c into the found values of Pr and (1.9)) we find the stresses by 
means of (1.8), (1.5). 
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The computation is thereby terminated if we seek a solution of the s stem not boun- 
ded at the edges of the stamps. If the solution bounded at the edges o iy one, or both 
stamps, is to be found, then by requiring w(*) (i) = 0, i = i (or I = 2, depending 
on which of the stamps the solution, bounded at the edges, is desired for), or i - 1,2, 
we obtstin, respectively, one or two equations imposing defin’lte conditions on the func- 
tion ji (3), i = 1 (or 2), or on the function 14 (3), i = i, 2. As a rule, in this case one 
equation, or a system of equations, is obtained to determine me settling under the stamp 
at the point 6 = 0 or 3 = II, or at both these points. 

Remark 1.1. The domain (domains) of contact cannot be given for the determi- 
nation of the bounded solution, but the forces Qrl Qs can be given. In this case, the 
domain (domains) of contact can be determined from the condition of boundedness of 
the solution at me edges of the stamp (stamps). However, a complex transcendental 
equation (system of transcendental equations) in the angle (angles) of contact must be 
solved: hence, the pro 
(angles) of contact. TK 

osed computational scheme assumes assignment of the angle 
e angle (angles) of contact for a given force Qrt or Q, , can 

always be determined by constructin 
angle (angles) of contact and on the 9 

a dependence of the force Q,, or Q, , on the 
orce Q . 

Remark 1.2. If there is one stamp, or two stamps of identical shape, it is then 
necessary to consider just one equation of the system (1.2). In the first case it is hence 
necessary to put P, = k = 0, and in the second case P1 = Pet Q = C = 0. 

Remark 1. 3. Let us consider a system of integral equations of rather more gene- 
ral form than the system (1.2) considered herein, namely: 

(1.15) 

Here 

4 W = In I t I F,, (t’) + I t I F,, VI + F, (t) + c, 

Fir ft) = i: a(*&“, t 3 t - t, Qlll== lljli = 0 (1.16) 
rn=l 

It is easy to note that the method utilized herein to solve the system (I. 2) is also 
applicable to the s 

-x entiation once wr 
stem (1.15). as well as a system obtained from (1.15) by differ- 
respect to S, , i.e. to a system of integral equations of the form 
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x ka ko 

cr, s a(‘) dt + s e dt = Is (z)- s qI (t) RI’ (z-t) dt- 
-ka -ka --La 

01 ka 

- 

S 
q (‘) KS.’ (1: - t) dt + 9 

S q (4 dt, lzl6ka 
-0 4.0. 

This latter follows from the fact that, as has ahead been remarked earlier for the 
s 
x 

stem (1.2), it is necessary to solve a system of the orm (1.1’7) first before finding Y 
e solution of the system (1.15). 
Let us note that if Fit (7) - 0 in (1.16), then the solution of the system (1.15). or 

(1.17), must be sought as a power series in just a. 

Remark 1.4. Let us consider an integro-differential equation of the form 

s 
t py (4 + j +& dt = f (4, lzlda (1.18) 

-a 

If we put Y’ (t) = q (x) in (1.18), then 
x 

f (4 = c . 9 (1) dt -k c, and (1.18) can be writ- 
-a 

ten thus 

x (I 

P S 
q (4 dt + 

S 
sdt=f(z)-ppC 

--(I -a 

Fig. 2 

In form (1.19) agrees with the first of the equations of the s stem (1.17)) and there- 
fore, if a is small, the method elucidated herein can be app I! red to (1.19). and we 
hence obtain a solution of (1.18) also. The arbitrary constant c can be determined 
from the condition obtained if it is required that the solution of (1.19) satisfy the ori- 
ginal equation (1.18). 

a. Example,. Let 

(1) 11 UJ) = Y = coast, I* (e) = R + (R - p, cos-’ 9 

In this case 

b ,,, = AyR-’ - C, b,i = ‘la C, bl, = - I/,, C, b,. = fIbIt-’ + C 

ha- --/,(A+~AR-l+C), b,,='/,.(C--A---PAR-'1 

Let us put v P 0.3, cs = 0.5, k = 0.1; using the proposed scheme of computations 
we obtain 

Q, = (3.728AR + 5.656Ay + 3.591Q) IO-’ 

As = 1.440Qs - 0.9593Ay - 0.4023Q - 0.5813 105 AR 

CR = 0.2235Q - 0.3457Q, + 01.9544Ay - 0.3667.10-’ bR 

(2) 11 ON = Ylv I* c-v = Ym Yt - coast 
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In this case 

bsr - AfiR-’ -C, b,,=‘/,C, by,= -Vsr C 

b, = Ay,R-’ + C, b,, - - ‘1, c, h = ‘I* c 

We put 7 - 0.3, a = 0.5, k = f , and re obtain 

OS - 0.428 nA (yt + y,) + lIa Q, CR - 0.15 nA (ye - y,) + 0.04371 Q 

Now if yt - ys - y, then PI = p,, Q P C - 0; we then obtain 

Q, = 0.658D, P, v 1.819 (1.8#))D, ~(0 (0) = 1.755 (1.787)D. 

0 (0 (0.5) = 1.796 (1.819) D,o(‘) (1) = 1.852 (1.82i) D, D = nAy 

Values of these quantities calculated by the method expounded in [s] are presented 
in parentheses. 

N, I N. I N8 1 N,.'@ 

-5.502 4.#)8 -1.987 -4324 
-5.406 4.077 -1.916 -4179 
-4.949 3.698 -1.853 -3724 
-4.2i4 3.077 -1.377 -3018 
-3.239 2.i65 -0.9546 -2097 
-2.076 1.199 -0.4746 -1052 
-0.789 0.687 -0.Oi72 

0.557 :.75& 
-0QQ; 

41267 :%! -1’367 -0:057 

-;.g4l; 

0:9553 1’029 

1809 

2737 2102 

NI N,.iO’ 

-5.855 
-5.622 

-$%! 
-2: 529 
-1.063 

0.419 
1.697 
2.590 

EZ 

8472 
8140 
7177 
5647 
3709 
1594 

-0632 
-2432 
-3756 
-4217 
-3216 

Table 1 

NW I N. I N. 

1.024 19.66 4.934 

0.9907 0.8920 19.34 t %! 18.26 
0.7333 
0.5235 

16.50 ;:f;; 
13.98 ’ 

0.2777 10.64 1:1j1 
o.n667 6.429 -0.157 

-0.2576 1.239 -1.327 
-0.4808 - 5.017 -2.219 
-O.GlM -12.49 -2.606 
-0.4W --21.33 -2.000 

Values of the function N4 (z), i = I,%..., 9, determined by the relations (1. lo), are 

! 
resented in Table 1 for convenience in practical utilization of the results obtained 
erein. 

In conclusion, let us note that, as computations have shown, the formulas obtained 
herein can successfully be used for values a 6 0.6. 
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