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A plane contact problem for an elastic disk interacting with two different rig}id stamps
is considered. The disk-stamp system is equilibrated by a force applied to the center
of the disk, It is assumed that there are no friction forces in the domain of contact,

and no loading outside of it.
The mentioned problem is reduced to determining the contact pressures from a sys-

tem of integral equations of the first kind, An asymptotic solution of the system is con-

sttucted, Examples are considered.
This paper is a further development and extension of part of the results elucidated in

(]
1, Formulation of the problem, Reduction to a system of inte-
gral equations, Asymptotic solution of the system of integral
equations, Let an elastic medium fill a circular domain § of radius R (Fig. 1),
interact with two different rigid stamps exerting imp-

ressive forces Qi and Qs A force Q = Q, — Qi is app-

/W lied at the center of the domain § . Let us assume there
QA

are no friction forces in the contact domain and no load-
ing outside of it. In this case the following conditions
can be written on the boundary of the domain §:

6, =0 for —nt+ha<t<—aaOdn— ke
v=0 for [§|<7m w=fi(6) for[0]<«

. U= f,0) forn —ka O+ ka

VI/////’ We assume the following relative to the function f; () :
4

£1(8) = fi(—0) for |8] < a,
f2@ 4 1) = fao(— 0+ 1) for [0 < kat (1.1)

Fig. 1

Under the assumptions (1. 1) made, evidently
G, (f: e) = O, (’l —0),"(!, 0) = —T (fo —9)
Now, if known methods of solving the plane problem of elasticity theory are utilized

[*2), then the problem formulated can easily be reduced to determining the contact
pressures from the following kind of system of integral equations:

(1.2)
.3 ka
{e@rx@—0do+ { a@+n) K@—0—n)dp=nsR" f1(®)—nC cos0,]0] <
- —ka
ka i a
{ a@tnre—0dw+{ s@K@—0-—ndo=

=nAR 1[40+ n) +nCcosO, [0]|<ka

—ka
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() @ o= Vg am 1/1g (B = B¥) (§ == v )2 008 ¢ = cons1n |2 sint/y| 4 Ve (1=2v)(1 —~ v)*
(negnf{—1)sint, A=y E(1—v), C=const, t=¢ — 0 (1.3)

Without restricting the generality, we henceforth consider & < 1.
Let us interchange variables in the system (1.2) so that the integrals on the right sides

of the equations would have integbauon limits —1 to 1, and let us replace 8 by az in
the first equation of (1,2) and 6 by kaz in the second, Then let us represent the sys~

tem (1.2) as an equivalent system of integral equations of the second kind, and obtain

oV (x)—__EAT S Vi g‘ (G‘at)dt—{— n" X
-1
Lyica ¢ o®
S RACTY (anssn(‘—-v)+F‘labc(t—v)l)v—-@-dv-i- w4
-1 —1
1 1 ‘
+°-:;"— S-‘—t_:z'—'au S K’ [a8; (¢ — k872 y)) = (z)dy, jz1<t (i i, i=12)
21 '
where L o® (z) (:)()
w x
P= S V—%——-_%dx. q (az) = ;,—-;”————:% 01 (kaz 4 7) = —F——; Vi—z

|
g’ ()= /:, (at) + RA1Csinat, gy (kat) = fy (kat + ) - RA-1C sinat 1.5)

F)=K@)+In|t|—anls|, v=t—y, ap="Ya(1 —2v) (1 —¥)7?
®1 =1, By =Fk)

Let us briefly describe the process of passing from (1.2) to (1.4). Taking account of
the evident inequality a (1 4- k) < x® it is easy to note that the function K (8 —¢)
has only a logarithmic singularity on the line 0 = ¢ and the function X (8 — ¢ — %)
is continuous in the domain of variation of its argument. Therefore, each equation of
(1.2) can be represented as

B 8 ¥
Voomit—zie=Yomve—na+ | wone—aa+se. 1z1<p
S s —

VE—DECIM wt—DEC(—y—Br+B

Following [¢}, the latter is easily written as an equivalent integral equation of the
second kind.
If it is assumed that

feae HP (—1,1), p>1, B>0
j,(kaz-{-n)ellm”(—i, 1)’ m>1: >Y>o

(here and henceforth H,* (—B, B) denotes the space of functions whose n-th deriva-

tive satisfies the HYlder condition with exponent « for | 2 | < ), then the following
theorem holds.
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Theorem 1,1, If the solution of the system (1.2) in the class of functions
Ly (—1,1), 1 +8>p>1, 8> 0 exists and is unique, then for any a & (0, m) it has
the form

g (@) = oW () 4 — ), g (hax 4 1) = @M(2) (1 — )~
(0 (2) € € (~1, 1))

We shall not stop to prove the theorem since it is easily proved if the following prop-
erty is used [%]

1
S . ‘)t—i_—"d‘ecm(—i. 1), if y@eH (—1.1)

-1

Let us tun to the construction of an aysmptotic solution, for small a , of the sys-
tem of integral equations (1.4). To do this, let us first represent X (f) and X (¢ — n)
as

K@Wy=1n [t) () +|¢| Fa(t) + F3 () + o+ anlt|—Injd

N
K@—m=F®) +ow, Fi()=Qap™ (@=9—8 (1.8)
k=1

and the right sides of (1.2) as

N N
—nccose+§§‘-f;(8)=n > 5,8, =nCcosd +’%‘—1,(e+a)=a 3 8™ (1.7)
k==t kg

Let us seek the solution of the system (1.4) as [*]

N m
o® ()= Z Z mg) (=)o’ Infa (1.8)

I=¢ {=0

Substituting (1, 6) - (1.8) into (1.4), and equating terms in identical powers of @
and Ina, we obtain equations for the successive determination of ;) (z), which
yield when solved

@l (2) = 271P, 010 (2) = [—biy (122 + 7%awS) () P &
0x (z) = a1 (1—22%) (Pjkay + Piand; In 8;) — 217% ay biy8¢ S (2) + n1By X
X 1(0.8069 ayy + ap) (1 — 22%) + 3274 aggd (Sy(x) — 0.1508)] ;2
0a® (2) = n7t Piay, (1—25%) 88, 00 (2) = Pify (3) O 1.9)
0a® (2) = 2P (D, 06 (@) = ((fn (2) 1In & + fs0 (2)) Pyt (U aubiat4bid) X
Xzt — Yy ¥ — ) + [Myau (1—23%) — Y374 Ny (2)] bia} 8 + 21 Paga50P k0

00 = {Py (fio (2)+fur (2) In &) + [¥/ asa*R™N,, (2) — amaun? Ny (z)—apn—tNy(2)] byy —
— agon™ [(1—23%) 84 (2) + %] b} w700 4 a7k P[4y n¢ anagiy (2) +
+ (lyanan + 4ag) (—2% + My 23 4 Ys) — Y, anaq (1—229)] 8 4 6n-da P kb
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Here

51 (2) 2= 217%3116008, (2), i (2) = =73 (Y4 3110008, (2) + [Bay (1422%) — 19.3717¢ x
1X a'o’] Y (=) + [90“ + (1.614 ayy - 20'1) as0) A (2) -+ ’/' aq + 64“"0”. S‘ (=)
Ja (2) = 4 (24 4 2* — Va)ary + Y5 (2% — 22 + Ys) an? — 43 n-danag® Ny (2)

fio(2) = — & (28 4 2 — T/a)agy — (5.5642¢ — 0.43842® — 1.866)a15 + Bn YapagnNy(2)+
A3/ T4 aget (18140114 2a5) Ny(2) + 64n-2a50'N, (2) — (1.644ay + 2a) (% — 2294+%5) +
+163“8;1030’N¢ (z)
Ny(2)=%15 + (2* —P3) 8¢ (3) — 381 (2), Ny (2) = —¥, 81 (2) + 12 (4 + 2% X
X Sy (2) 4 68y (2) — ¥/, 8¢ (z) 4 4.4892* — 5.570

Ny(@ =% 1—22% =851 (g) + Yy (22 —¥) Se(2) + Y (1.10)
Ny (8) = s (3) + (00831231 — 1.208)S,(z) — 0.24945, (z) — 0.02642% + 0.099282% —
—0.3035 &* — 0.2080

N, (3) = (0.8896 — 0.16572% — 0.057142%) S () — (3.146 — 1.1562% 4 0.0190524) X
X S¢(z) —0.01928; (3) + 0.3723 4 0.015232%, No(z) = (0.4583 — 0.16582% - 000316829 X
X 8¢ () — (0.1245~0.0143522 — 0.003502 39)8, (z) + 0.00478S; (z) — 0.05018 —
—0.0025342%, Ny(z) = (0.2360 4 0.066052%)5, (z) + 0.3948 — 1.308 23 4 0.82072% 4
+0.08315 (§ — PP (4 — 2) (1 4+ 2)
N (z) = 95, (2) + 6 (1 4 22%) S1(2) + ¥ Ny (2) = 28, (2) — So (%)
Usnts (2) + Usnt (2) + 2 (4 — 22Y) Upn1 (2) — 82/ (22 4 1) = 0
—UL @ =Ui(z)=—ln(t + ) (t = 2)
Se(@) =Yg+ (1 —22% - Yy(1 — 2 (In* (1 — 21 4 ) —=Y)

o [ 3Ugy () 4xUgy., (7)
Sy{z) = (1 — =) ?} [(4,‘:“_ 9R (2 + 1)':(§k — 3)’]
=1

® Uy (2)
Se (z) =96 (1 —=%) 2}1 @ — 1) (G — 9

= { s f, f==1,2
& {k. if =2 THAT

The expressions for the functions §;(x), =1, 2,...,5, as well as Uy, (zr) are presen-
ted in  {*], see formula (1.15). Given there also are tables of the functions §; (), { =
= 1,2,...,5 for values of j=| < 1 withan h = 0.1 spacing.

Thus, an asymptotic solution of the system (1.4), or equivalently, the differentated
system (1.2), has been obtained. Evidently, the class of solutions of (1.2) will include

e whole class of solutions of the original system (1.2), as well as solutions, extraneous
to the system (1.2), which satisfy the solution of (1.2) with an arbiwary constant on the
right side. Utilizing the arbitrariness latent in the solution of (1.4), it can be demanded
that this solution should satisfy the original system (1.2). We hence obtain equations to
determine the arbitrary constants Py.

Let us now determine the P;. To do this let us substitute the values found for o{*)(x)
in the system (1.2), We then put @ =0 ,and by evaluating all the integrals we obtain
a system of equations to determine the Py, namely:
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(1.11)
4 4 3
P )\ (Ayy+ Ay Ina)a' + P, [ZB,, a! — 1 ag%a In ka ] =1 ¢, 0 —Yianbpnatlna
le=g i=0 f=—}
4 L}
P [2 B ol — 1 aykatIn a] + Py D (A + Ay In ka) (ka)! =
twg =0
3
= D) Ca' — Yy naubukta® In ka
{=—1
Here

Ago = asg + In 2, Ao = 0.8106az, A = ag + 0.306%a;; — 0.03288a,0*
A = 1.442a; — 0.1454a1a,0 — 0.1802a51050 — 0.01775a,°
A = 2.025ay, 4 1.066a,, — (0.8545a,, 4 0.6254a5; — 0.0220a5?) 10 1a,0* — 0.3004a502;1—
~0.1628 a;,? — 0.4103a305 — 0.25 (ag® + Kagy?)
do = —1, An=0, Ay = an, Ay = —0.1801anag, Adu = 2.025a;, — 0.4039 a,;® —
~ 0,0653a118,0° — 0.5ag611, Boy = k™ agdy? (1.12)
By =0, By = Ysau (1 + k") k6%, By = — 0.09008a; ago k(1-+k3)8;72, Coy = 0
By = — a4 (0.2017 ayy + 0.25 ayt 4 0.04927a5?), §73 k (1 + k)3, Cuyy = nbyody
Cyy = — My nbyyby, Cog== —0.2829abiq 8,2, Cy; = —[(0.6337a1;4-0.06051 age?- 0.7854a4) X
Xbyg — 1478 by} 0% — s mag kbjsby (isE7; i, [ =1,2; 81 =1, 8= k)

And finally, we obtain the following formula to determine the Q; :

Q; = Rabdy (Py [1 — V(a3 + ¥y 1% ago @38 — (0.1008ay; + 0.125a,, + 0.024B4a%—
——.l/“ — l/. a1 In 6‘) G‘b“ Rt l/’ kaup,' C&‘a“ - ‘/l n b{,&’é{a} (i =f= f, f, ]= 1,2) (113)

Formula (1.13) yields the value of the force referred to unit length of the disk. In
order to obtain the force which must be applied to a disk of length I, the values given
by (1.13) must be multiplied by [,

Let us write down a2 number of the coefficients ay in (1.6)

a3 = 0.5, G1g == — ’jg‘, agg = 0.253!6, agy == — ‘l,‘na, ay = —0.5 — b
as = 0.5(Y1s + b — 0.5a), 653 = Vo (a — b — 11%/34) (1.14y

0= —054+124 b ay=05(05a—b—1n2—0.25), a3 = Ve (b — 6+ In2 4
+Yhe (a=(1—=2v)(1 — VL b=, —-8v)(1 — )

The general scheme of a computation by means of the formulas proposed is the

following:
1. We find oy by means of (1.14) by assigning the v .

2. We find values of Py (i = 1,2) from the system (1.11), by giving « and k. and
utilizing (1. 12), and then we find Qq (i =.1,2) from (1. 13).

3. We find the arbitrary constant € from the condition Q = Q4 — Q, by giving Q.
Substituting € jnto (1.13), we find Qs, and also Q1 = Q@ — Q.

4, Substituting € into the found values of Py and (1,9), we find the stresses by
means of (1.8), (1.95).
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The computation is thereby terminated if we seek a solution of the iystem not boun-
ded at the edges of the stamps. If the solution bounded at the edges of one, or both

stamps, is to be found, then by requiring o {1)=0, i =1 (or i= 2, depending

on which of the stamps the solution, bounded at the edges, is desired for), or i = 1,2,
we obtain, respectively, one or two equations imposing definite conditions on the func=-
tion f;(8), i = 1 (or 2), or on the function fi (8), i = 1, 2. As a rule, in this case one
equation, or a system of equations, is obtained to determine the settling under the stamp
at the point 8 =0 or § = =x, or at both these points,

Remark 1.1. The domain (domains) of contact cannot be given for the determi-
nation of the bounded solutions, but the forces Q1 Qs can be given, In this case, the
domain (domains) of contact can be determined from the condition of boundedness of
the solution at the edges of the stamp (stamps). However, a complex transcendental
equation (system of wanscendental equations) in the angle (angles) of contact must be
solved; hence, the proposed computational scheme assumes assignment of the angle
(angles) of contact. e angle (angles) of contact for a given force @, or @y, can
always be determined by constmctin§ a dependence of the force @y, or @, ., on the
angle (angles) of contact and on the force @ .

Remark 1.2. If there is one stamp, or two stamps of identical shape, it is then
necessary to consider just one equation of the system (1.2). In the first case it is hence
necessary to put Py = k = 0, and in the second case Py=P,, Q=C=0.

Remark 1.3, Letus consider a system of integral equations of rather more gene-
ral form than the system (1.2) considered herein, namely:

{—miz— e+ vapmls— 1+ K@ =g @ de 4

X

ka
+ s‘ GO (Ku(z—t)+bldt=fi(z), |z|<a (1.15)

ka
L EEE AN EETED ATED PO

—~ka

+ (s tKuE—n+hla=h@E, (21<k
-l

Here
Ki@)=ln|t| Fu ()4 |t| Fu(t) + Fiy(t) +¢,
N
Fy(t)= Z amt™, t=zxr—1!, am=ay =0 (1.16)
m=1

It is easy to note that the method utilized herein to solve the system (1.2) is also
applicable to the ;sgstem (1.15), as well as a system obtained from (1,15) by differ-
entiation once with respect to &, , i.e, to a system of integral equations of the form

m§owat § Wacn@-{core—na-
— -~ -
(3.3 a
~ {a@xie—na+dt (oo jzi<e (1.47)

—Kx -
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x ka ka
™ S g1 (8) dt + S ‘q‘T(lldt=/, (@) — S g1 () Ky (z—1) dt—
—ka . —ka ‘o —ka
= eomie—nar 8 ( qoa jei<h
—_—a —ha

This latter follows from the fact that, as has already been remarked earlier for the
system (1, 2), it is necessary to solve a system of the form (1.17) first before finding
Lze solution of the system (1.15).

Let us note that if Fy () = 0 in (1,16), then the solution of the system (1.15), or
(1.17), must be sought as a power series in just e.

Remark 1.4, Letusconsider an integro-differential equation of the form

s ¢ T
4 wia+ § L a=f@, lzi<a (19
il —e
3 20 If we put ¥’ (2) = g () in(1.18), then
~ a ¢
o y T(x) = ﬂ g(9)dt+C, and (1.18) can be writ-
ﬂ —_—
4 1 ten thus
a
<

p§owasr § HLazro—w

-3 a

Fig. 2

In form (1. 19) agrees with the first of the equations of the system (1.17), and there-
fore, if @ is small, the method elucidated herein can be applied to (1.19), and we

hence obtain a solution of (1.18) also. The arbitrary constant € can be determined
from the condition obtained if it is required that the solution of (1.19) satisfy the ori-
ginal equation (1.18),

2. Examples, Let
(1) f1(8) = y=rconst, /,(0) = R 4 (R — f) cos1 §

In this case

b = AYR™ — C, byy = Y3 C, byy = ~— 3¢ C, bo = PAR' 4- C
by = — "3 (8 + BAR™ 4 (), by =Yy (C — 54 — 5PART)

Let us put v = 0.3, « = 0.5, & = 0.4; using the proposed scheme of computations
we obtain
Q, = (3.728AR - 5.656Ay { 3.591Q) 1072
AP = 1.440Q, — 0.9593 Ay — 0.4023Q — 0.5873 10~® AR
CR = 0.2235Q — 0.3457Q, - 01.9544Ay — 0.3667-10"¢ AR

(2) h (0) = w1, f3 (0) = ¥y, y; — const
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In this case
b)‘ = A?lR_' -_ C, bll = l/. C. bl‘= -_— ‘/u C
byo = AYsR™ 4 C, by = — Y, C, by = Y5 C

We put 7= 0.3,a = 0.5, k=1, and we obtain
Qs = 0428 %A (Y1 + ¥2) + Y2 Q. CR =0.45 nA (y1 — ¥v,) + 0.04371 Q
Now if y; = y4 = y, then P, = P,, Q = C = 0; we then obtain

Q; = 0.856 D, Py = 1.819 (1.820) D, o™ (0) = 1.755 (4.787) D.
oM (0.5) = 1.796 (1.819) D, ¥ (1) = 1.852 (1.821) D, D = s Ay

Values of these quantities calculated by the method expounded in [¢] are presented
in parentheses,

Table 1

N, N, N | Nt | N, | No-100 | Ny N, N,

—5.562| 4.208|—1.987 | —4324 | —5.855 8472 1.024 10.66 | 4.934
—5.408| 4.077|—1.016 | —4479 | —5.622 8140 0,9907{ 19.31 4,756
—4.949| 3.698[—1.853 | —3724 | —4.948 7477| 0.8920] 18.26 | 4.235
—4.214 3.077(—1.377 | —3018 | —3.893 5647] 0.7333] 16.50 | 3.410
—3.239| 2.165|—0.9546{ —2097 | —2.529 3709| 0.5235| 13.98 | 2.310
—2.076| 1.199]|—0.4746| —1052 { —1.063 15841 0,2777] 10.64 1.114
—0.789| 0.687|—0.0172| —0019 0.4130] —0632| 0.0067 6.429| —0.157
0.557 | —0.751 |—0.4707; 1016 1.697 | —2432|—0.2576 1.239( —1.,327
1.886|-—1.380| 0.8277} 1809 2.590 | —3756|—0.4808 | — 5.017) —2.219
3,133 —1.367| 1,029 2737 2,887 | —4217|—0.6108 | —-12.49 | —2.606
4.2671—0.0571 0.9553] 2102 2,191 | —32161—0.4961 [--21.33 | —2.000

'“O0.00000000
CORIINdW=RO

Values of the function Nq(2), i = 1,2,..., 9, determined by the relations (1.10), are
gresented in Table 1 for convenience in practical utilization of the results obtained
erein,
In conclusion, let us note that, as computations have shown, the formulas obtained

herein can successfully be used for values a < 0.8,
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